

Getting Started in Frequencies, Crosstab, Factor and Regression Analysis (ver. 2.0 beta, draft)

http://dss.princeton.edu/training/

Case study: intro

Search here in the home page for this dataset

Search Results

Metadata	leaders/people (10); Sarah (15); George W. Bush job (Time Magazine/Abt SRBI Poll # 2008-4567: America by the Numbers [Study# USSRBI2008-4567] Abt SRBI, Inc. (Schulman, Ronca, & Bucuvalas, Inc.) Time Magazine October 3-6, 2008 Registered likely voters 1,053 Respondents were interviewed via landlines and cellular telephones. 136 D08 presidential election (1); Obama/Biden vs. McCain/Palin (4); rating political h Palin vs. Joe Biden (5); Barack Obama vs. John McCain (3); source of news performance (1); direction of country (1); economy (2); social contract (2); 1); mortgage recovery plan (1); opinion on certain statements (10); war in Iraq).	
Codebook in two formats	Documentation Download Study documentation files PDF (186kb) Word (440kb)	are available for free download.	
Datasets, two formats: ACII and	Data Sets	lable only to Roper<i>Express</i> Users and Members.	NOTE : When data is not available in Stata, you can download the SPSS portable (*.por),
SPSS	ASCII (385kb) SPSS portable (496kb) Study File Listing and Oth Text (3kb) Data tables/Frequencies PDF (54kb)	ier Notes	open it using SPSS (available at the DSS lab) and saving it as Stata.

Case study: frequencies

Distribution of electoral preferences and gender. According to the codebook 'q5' has the electoral question and 'qa' gender.

. tab q5 /*No weights*/

Q5. If the Presidential election were held today and the candidates were Barack	Freq.	Percent	Cum.
Barack Obama and Joe Biden, the Democra John McCain and Sarah Palin, the Republ (VOL) Other/Neither (VOL) Undecided/Don't know/no answer	481 464 21 87	45. 68 44. 06 1. 99 8. 26	45.68 89.74 91.74 100.00
Total	1, 053	100.00	
. tab q5 [aweight=weight] /*With weights*/			
05. If the Presidential election were held today and the candidates were Barack	Freq.	Percent	Cum.
Q5. If the Presidential election were held today and the candidates were		Percent 47. 90 42. 69 1. 95 7. 47	Cum. 47. 90 90. 58 92. 53 100. 00

	A. Gender (DO NOT ASK)	Freq.	Percent	Cum.	
-	Male Female	493 560	46. 82 53. 18	46. 82 100. 00	No weights
	Total	1, 053	100.00		

. tab qa [aweight=weight] /*With weights*/

	A. Gender (DO NOT ASK)	Freq.	Percent	Cum.	
_	Male Female	500. 388396 552. 611604	47. 52 52. 48	47.52 100.00	Using weights
_	Total	1, 053	100.00		

NOTE: At this point, it is strongly recommended to <u>open a log</u> to keep a record of your work and to extract output, type:

log using mywork.log

No weights

Using weights

You could also open a do-file by typing doedit and copy your commands there.

Case study: Electoral preferences by gender

. tab q5 qa [aw=weight], col row /*Electoral preferences by gender*,

Key frequency row percentage column percentage		
Q5. If the Presidential election were held today and the candidates were Barack	A. Gender (DO NOT ASK) Male Female	Total
Barack Obama and Joe	209. 42078 294. 91697 41. 52 58. 48 41. 85 53. 37	504. 33775 100. 00 47. 90
John McCain and Sarah	252. 9313 196. 55625 56. 27 43. 73 50. 55 35. 57	449. 487545 100. 00 42. 69
(VOL) Other/Neither	10. 05573910. 501344148. 9251. 082. 011. 90	20. 557083 100. 00 1. 95
(VOL) Undeci ded/Don' t	27.980574 50.637048 35.59 64.41 5.59 9.16	78. 617623 100. 00 7. 47
Total	500. 3884552. 611647. 5252. 48100. 00100. 00	1, 053 100. 00 100. 00

Case study: Electoral preferences by age

. tab q5 f1 [aw=weight], col row /*Electoral preferences by age*/

Кеу										
frequency row percentage column percentage										
Q5. If the Presidential election were held today and the candidates were			F1. Wr	nat is your	age?			F1. What i	s your age?	
Barack	18-24	25-29	30-34	35-39	40-44	45-54	55-64	65 or old		Total
Barack Obama and Joe	29. 355119 5. 82 77. 57	26. 435913 5. 24 50. 53	40. 727272 8. 08 40. 92	46. 595118 9. 24 51. 51		129. 51971 25. 68 51. 68	86. 169373 17. 09 50. 32	102. 39238 20. 30 43. 21	4. 5319886 0. 90 40. 00	504. 33775 100. 00 47. 90
John McCain and Sarah	6. 2229886 1. 38 16. 44	22. 18839 4. 94 42. 42	54. 883049 12. 21 55. 14	36. 825588 8. 19 40. 71	51.046351 11.36 49.69	99. 992283 22. 25 39. 90	69. 037199 15. 36 40. 31	104. 76215 23. 31 44. 21	4. 5295414 1. 01 39. 98	449. 487545 100. 00 42. 69
(VOL) Other/Neither	0 0.00 0.00	0 0. 00 0. 00	2. 1209543 10. 32 2. 13	2. 4419715 11. 88 2. 70	4. 51458561 21. 96 4. 39	3. 1358789 15. 25 1. 25	2. 7783459 13. 52 1. 62	5. 56534701 27. 07 2. 35	0 0. 00 0. 00	20. 557083 100. 00 1. 95
(VOL) Undeci ded/Don' t	2. 2672181 2. 88 5. 99	3. 6879373 4. 69 7. 05	1. 809561 2. 30 1. 82	4. 5920698 5. 84 5. 08	8. 5570854 10. 88 8. 33	17. 952531 22. 84 7. 16	13. 264407 16. 87 7. 75	24. 219596 30. 81 10. 22	2. 2672179 2. 88 20. 01	78. 617623 100. 00 7. 47
Total	37. 845325 3. 59 100. 00	52. 312241 4. 97 100. 00	99. 540836 9. 45 100. 00	90. 454747 8. 59 100. 00	102. 7289 9. 76 100. 00	250. 600407 23. 80 100. 00	171. 24932 16. 26 100. 00	236. 93948 22. 50 100. 00	11. 328748 1. 08 100. 00	1, 053 100. 00 100. 00

Case study: Electoral preferences by educational attainment

. tab q5 f4 [aw=weight], col row /*Electoral preferences by education*/

Кеу								
frequency row percentage column percentage								
Q5. If the Presidential election were held today and the candidates were Barack	F4. W 8th grade		highest grad High scho		ing that yo College g	ou've comple Postgradu	ted? (VOL) No	Total
Barack Obama and Joe	2. 2991619	3. 883265	81. 589679	113. 53524	169. 39657	130. 23545	3. 3983797	504. 33775
	0. 46	0. 77	16. 18	22. 51	33. 59	25. 82	9. 67	100. 00
	41. 27	33. 65	44. 32	45. 42	44. 89	59. 52	60. 03	47. 90
John McCain and Sarah	3. 2718681	6. 1159475	76. 7484051	116. 69213	170. 30303	74. 093841	2. 2623235	449. 487545
	0. 73	1. 36	17. 07	25. 96	37. 89	16. 48	0. 50	100. 00
	58. 73	53. 00	41. 69	46. 68	45. 13	33. 86	39. 97	42. 69
(VOL) Other/Neither	0	0	3. 7389017	3. 382658	9. 8911577	3. 5443656	0	20. 557083
	0.00	0. 00	18. 19	16. 45	48. 12	17. 24	0. 00	100. 00
	0.00	0. 00	2. 03	1. 35	2. 62	1. 62	0. 00	1. 95
(VOL) Undeci ded/Don' t	0	1. 5397725	22. 004128	16. 367784	27. 7818421	10. 924096	0	78. 617623
	0.00	1. 96	27. 99	20. 82	35. 34	13. 90	0. 00	100. 00
	0.00	13. 34	11. 95	6. 55	7. 36	4. 99	0. 00	7. 47
Total	5. 57103	11. 538985	184. 08111	249. 97781	377. 3726	218. 79775	5. 6607032	1, 053
	0. 53	1. 10	17. 48	23. 74	35. 84	20. 78	0. 54	100. 00
	100. 00	100. 00	100. 00	100. 00	100. 00	100. 00	100. 00	100. 00

Case study: Electoral preferences by income

Key frequency row percentage column percentage Q5. If the Presidential election were held today and the candidates were F13. Finally, just for classification purposes, was your total family income bef Less than \$20,000 t \$35,000 t \$50,000 t \$75,000 t \$100,000 Barack or \$150.0 (VOL) No Total 122.78749 59.632459 69.732723 51.1129092 Barack Obama and Joe 37. 525195 51.14097 72.715849 39.690155 504.33775 10.14 14.42 24.35 11.82 13.83 10.13 7.87 100.00 7.44 60.42 49.40 48.59 57.51 39.05 46.16 44.46 37.63 47.90 18.630762 39.764056 64.4115908 69.827216 John McCain and Sarah 86.023642 68.843117 54.640308 47.346852 449.487545 19.14 12.16 4.14 8.85 14.33 15.53 10.53 15.32 100.00 30.00 38.41 43.04 32.71 56.34 45.57 47.53 44.88 42.69 2.1243815 2.200355 5.0546217 (VOL) Other/Nei ther 1.5060026 88321203 3.2060684 2.5018142 3.0806277 20.557083 7.33 4.30 15.60 12.17 10.33 14.99 10.70 24.59 100.00 2.42 0.85 1.17 1.39 1.91 4.79 2.14 2.04 1.95 (VOL) Undeci ded/Don' t 4.4480018 11.739914 9.3136182 18.37691 4.9181423 9.409895 7.01703324 13.3941079 78.617623 5.66 14.93 11.85 23.38 6.26 11.97 8.93 17.04 100.00 7.16 11.34 6.22 8.61 3.22 6.23 6.10 12.70 7.47 62.109961 103.52815 149.64713 213.49343 152.69863 151.06636 114.97061 105.48574 Total 1.053 5.90 9.83 14.21 20.27 14.50 14.35 10.92 10.02 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

. tab q5 f13 [aw=weight], col row /*Electoral preferences by income*/

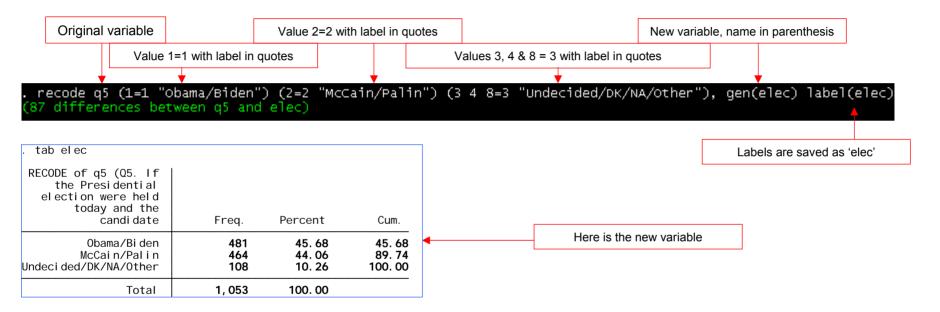
Case study: Electoral preferences by employment status

. tab q5 f8 [aw=weight], col row /*Electoral preferences by employment status*/

Кеу									
frequency row percentage column percentage									
Q5. If the Presidential election were held today and the candidates were Barack	Empl oyed	Empl oyed	Laid off	f8 Retired		Homemaker	Somethi ng	(VOL) No	Total
Barack Obama and Joe	263. 30095 52. 21 47. 30			125. 50328 24. 88 46. 14	15. 486465 3. 07 82. 02	3.30		0.80	504. 33775 100. 00 47. 90
John McCain and Sarah	252. 31686 56. 13 45. 33	25. 723928 5. 72 36. 19	6. 1500438 1. 37 23. 37	112. 5963 25. 05 41. 39	1. 1268505 0. 25 5. 97	8.27	2. 70	0. 50	449. 487545 100. 00 42. 69
(VOL) Other/Neither	11. 498793 55. 94 2. 07	1. 6530186 8. 04 2. 33	0 0.00 0.00	6. 1126834 29. 74 2. 25	0 0. 00 0. 00	0.00	6. 29	0.00	20. 557083 100. 00 1. 95
(VOL) Undeci ded/Don' t	29. 558151 37. 60 5. 31	6. 7386098 8. 57 9. 48	2. 4747578 3. 15 9. 40	27. 814172 35. 38 10. 22	2. 2672181 2. 88 12. 01	9.21	3. 21	0.00	78. 617623 100. 00 7. 47
Total	556. 67476 52. 87 100. 00	71. 08488 6. 75 100. 00	26. 3172676 2. 50 100. 00	272. 02643 25. 83 100. 00	18. 8805338 1. 79 100. 00	5.80	3.86	0.60	1, 053 100. 00 100. 00

Case study: Testing for associations (preparing the data)

Before running any test we need to prepare the data by setting to missing any non-valid response (like "don't know/no answer/not sure") unless is relevant to the question. It is important to 'clean' the variables for the tests to be as accurate as possible. For demographics we will remove non-response items. Here are a series of commands per variable (columns) to prepare some variables for you to run on your own.


Description	Age	Education	Income	Employment	Gender
creating a new variable	gen age=f1	gen educ=f4	gen income=f13	gen employ=f8	gen gender=qa
exploring the new variable	tab age	tab educ	tab income	tab employ	tab gender
checking for labels from original variable	labelbook f1	labelbook f4	labelbook f13	labelbook f8	labelbook qa
assigning labels to new variable	label value age f1	label value educ f4	label value income f13	label value employ f8	label value gender qa
exploring the new variable	tab age	tab educ	tab income	tab employ	tab gender
setting no response to missing	replace age=. if age>8	replace educ=. if educ==8	replace income=. if income==8	replace employ=. if employ==8	
adding variable labels	label variable age "Age"	label variable educ "Educational attainment"	label variable income "Family income"	label variable employ "Employment status"	
exploring the new variable	tab age	tab educ	tab income	tab employ	

Case study: Testing for associations (preparing the data –cont.)

Here is an easy way to do it by using the command clonevar in Stata.

Description	Age	Education	Income	Employment	Gender
creating a new variable	clonevar age=f1	clonevar educ=f4	clonevar income=f13	clonevar employ=f8	clonevar gender=qa
exploring the new variable	tab age	tab educ	tab income	tab employ	tab gender
setting no response to missing	replace age=. if age>8	replace educ=. if educ==8	replace income=. if income==8	replace employ=. if employ==8	
exploring the new variable	tab age	tab educ	tab income	tab employ	7

To find whether there is some association between demographics and electoral preferences we can use chi-square but first we need to 'clean' the electoral variable (q5). Lets create a new variable 'elec' from 'q5'. We will use recode for this, type:

_		
•	tab elec gender, nofreq chi2 Pearson chi2(2) = 21.0639	Pr = 0.000
	tab elec age, nofreq chi2 Pearson chi2(14) = 20.6142	Pr = 0.112
	tab elec educ, nofreq chi2 Pearson chi2(10) = 25.8557	← Pr = 0.004
	tab elec income, nofreq chi2 Pearson chi2(12) = 26.4188	Pr = 0.009
	tab elec employ, nofreq chi2 Pearson chi2(12) = 21.8394	Pr = 0.039

We use the 'nofreg' option after comma since we are not interested on the crosstabulations but rather on the tests. We can see that gender, education, income and employment status are somehow associated with electoral preferences. Age does not seem to have any association.

When you have continuous data you need to use <u>descriptive statistics</u>. To start exploring this option you can use the summarize command which provides first look at the data (number of observations, mean, standard deviation, minimum and maximum values). Lets take a look at the battery of questions in q8.

. summarize	q8a q8b q8c	q8d q8e q8f	q8g q8h q8i q8j		
Variable	Obs	Mean	Std. Dev.	Min	Мах
q8a q8b q8c q8d q8e	1053 1053 1053 1053 1053 1053	69.26591 66.09497 78.26401 64.73029 72.20038	117.1873 108.8857 146.9197 124.7597 173.5736	0 0 0 0	999 999 999 999 999
q8f q8g q8h q8i q8j	1053 1053 1053 1053 1053	119.5973 111.4653 37.36657 73.7075 99.63723	237.9549 223.1448 60.16443 137.2898 189.1918	0 0 0 0	999 999 999 999 999

The questions ask for answers between 0 and 100. The maximum value 999 represents "Not answer/Not sure" response. The mean and standard deviation factor in the 999 therefore biasing the mean and sd. so we need to set 999 to missing so the values go from 0 to 100.

. summarize	x8a x8b x8c	x8d x8e x8f	x8g x8h x8i x8j		
variable	obs	Mean	Std. Dev.	Min	Мах
×8a ×8b ×8c ×8d ×8e	1038 1040 1028 1036 1018	55.83044 54.43365 55.87257 49.39961 40.33595	35.31804 31.28831 31.18157 35.33493 24.2347	0 0 0 0	100 100 100 100 100
×8f ×8g ×8h ×8i ×8j	982 991 1050 1031 1009	56.01527 55.93845 34.61905 53.96314 60.41824	26.50595 22.22173 31.2718 23.95454 22.56533	0 0 0 0	100 100 100 100 100

Here 999 is set to missing and we have correct statistics (see the slides on 'preparing the data' to do this). For presentation purposes we won't use weights here.

To get more than the mean and sd you can use tabstat which offers several options (type help tabstat for more details). Notice we use weights here. In these series of questions '0' means 'unfavorable' and '100' favorable.

· tabbtat			tor hog hor		S(mean mea		count rang			
stats	x8a	x8b	x8c	x8d	x8e	x8f	x8g	x8h	x8i	x8j
mean p50	55. 83044 60	54. 43365 55	55. 87257 60	49. 39961 50	40. 33595 50	56. 01527 60	55. 93845 55	34. 61905 30	53. 96314 55	60. 41824 65
sd	35. 31804	31. 28831	31. 18157	35. 33493	24. 2347	26. 50595	22. 22173	31.2718	23. 95454	22. 56533
vari ance N	1247. 364 1038	978. 9581 1040	972. 2905 1028	1248. 557 1036	587.3207 1018	702. 5655 982	493. 8053 991	977. 9253 1050	573. 82 1031	509. 194 1009
range	100	100	100	100	100	100	100	100	100	100
min	0	0	0	0	0	0	0	0	0	0
max	100	100	100	100	100	100	100	100	100	100

tabstat x8a x8b x8c x8d x8e x8f x8g x8h x8i x8j, s(mean median sd var count range min max)

Here is a description of each variable

. describe x8*

variable name	storage type	display format	val ue I abel	variable label
x8a	float	%9. Og		Obama
x8b	fl oat	%9. Og		McCai n
x8c	fl oat	%9. Og		Bi den
x8d	float	%9. Og		Palin
x8e	float	%9. 0g		Congress
x8f	float	%9. 0g		Congressman
x8g	float	%9. 0g		Supreme court
x8ň	fl oat	%9. 0g		Pres. Bush
x8i	fl oat	%9. 0g		State gov
x8j	float	%9. Og		Local gov

Lets explore a combination of commands to get more info out of your data. We will check out the battery of questions in q25

. describe q25	<u>5</u> *			
variable name		display format		variable label
q25a	double	%10.0g	q25a	Q25. Favor/Oppose: A woman should be able to get an abortion if she wants one in
q25b	double	%10.0g	q25b	Q25. Favor/Oppose: Gay couples should be allowed to marry, giving them full lega
q25c	double	%10.0g	q25c	Q25. Favor/Oppose: The government should provide health care coverage to all cit
q2 5 d	double	%10.0g	q25d	Q25. Favor/Oppose: Government regulation of financial institutions should be gre
q25e	double	%10.0g	q25e	Q25. Favor/Oppose: The government should have let financial institutions that go
q25f	double	%10.0g	q25f	Q25. Favor/Oppose: The government should allow offshore drilling for oil and gas
q25g	double	%10.0g	q25g	Q25. Favor/Oppose: Congress should pass stricter laws to protect the environment
q25h	double	%10.0g	q25h	Q25. Favor/Oppose: Our troops should stay in Iraq without a timetable for withdr
q25i	double	%10.0g	q25i	Q25. Favor/Oppose: Government should cut taxes on businesses to help the economy
q25j	double	%10.0g	q25j	Q25. Favor/Oppose: The government should help people who can't afford their mort

. sum q25≁					
Variable	obs	Mean	Std. Dev.	Min	Max
q25a q25b q25c q25d q25e	1053 1053 1053 1053 1053	6.907882 5.424501 7.321937 8.025641 9.676163	10.29471 10.47273 12.96045 11.76441 18.00545	0 0 0 0	99 99 99 99 99
q25f q25g q25h q25i q25j	1053 1053 1053 1053 1053	8.073124 7.635328 6.269706 8.096866 7.317189	9.473867 11.42399 11.7495 14.78033 14.04718	0 0 0 0	99 99 99 99 99

The questions ask for answers between 0 and 10 (see the codebook) . The maximum value 99 (below) represents "Not answer/Not sure" response.

The mean and standard deviation factor in the 99 therefore biasing the mean and sd. so we need to set 99 to missing so the values go from 0 to 10 (see the slides on 'preparing the data' to do this).

Here some descriptive statistics for q25 where a value of '0' or '1' represents 'strongly oppose' and value of '9' or '10' represents 'strongly favor'.

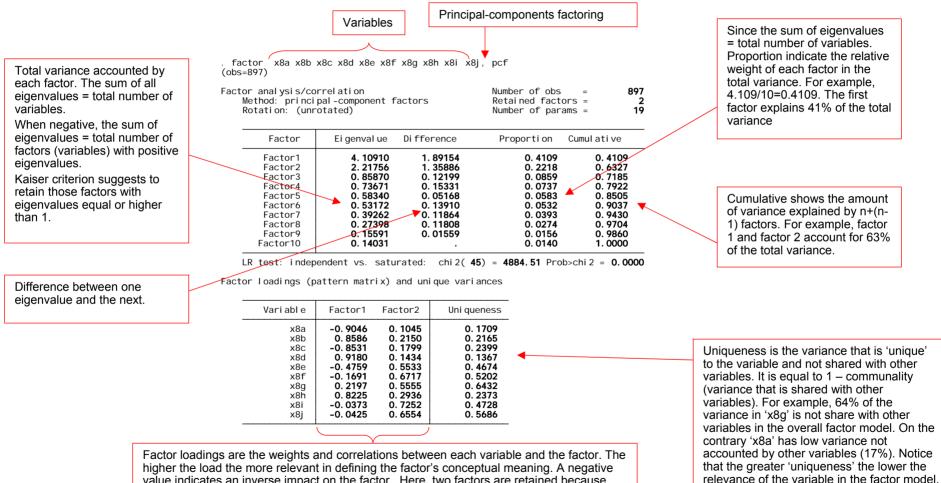
. tabstat > ax)	x25a x25b	x25c x25d	x25e x25f	x25g x25h	x25i x25j	[aw=weigh1	t], s(mean	median sd	var count	range min m
stats	x25a	x25b	x25c	x25d	x25e	×25f	x25g	x25h	x25i	×25j
mean p50 sd variance N range min max	5.909401 7 4.078566 16.6347 1042 10 0 10	4.600287 5 4.225217 17.85246 1042 10 0 10	5.747949 6 3.623961 13.1331 1034 10 0 10	6.607931 7 3.232957 10.45201 1037 10 0 10	6.193698 6 3.011944 9.071804 1013 10 0 10	7.108907 8 3.250066 10.56293 1043 10 0 10	6.302037 7 3.129978 9.796765 1038 10 0 10	4.691252 5 3.698315 13.67753 1038 10 0 10	5.790056 5 3.007888 9.04739 1027 10 0 10	5.318128 5 3.107059 9.653819 1030 10 0 10

tab elec gender [aw=weight], sum(x25c)

Means, Standard Deviations, Frequencies and Number of Observations f The government should provide health care coverage to all citizens who can't a

RECODE of q5 (Q5. If Presidenti al election were held today and the	gend		
candidate	Male	Female	Total
Obama/Bid	8.1908614	8.0364917	8.1006079
	2.0636006	2.2601473	2.1797639
	192.45682	270.91296	463.36978
	195	281	476
McCain/Pa	2.7627034	3.4770192	3.070669
	2.9422253	3.230397	3.0867491
	234.52383	177.7414	412.26523
	254	203	457
Undecided	5.9889067	5.8488136	5.9034835
	3.6637616	3.2399565	3.3944003
	34.11981	53.313209	87.433019
	40	61	101
Total	5.2670676	6.1896809	5.7479494
	3.7346278	3.4642965	3.6239613
	461.10046	501.96757	963.06803
	489	545	1034

Here we use the combination tab/sum to explore a response to a third variable (usually continuous) in a crosstabulation. We are looking at the mean value of x25c ('govt should provide health care') by electoral preference and gender. For example, male Obama supporters tend to support government providing health care who can't afford it (mean of 8.19). On the contrary, those who are male and prefer McCain tend to disagree (with a mean score of 2.76)


Case study: dummies

The quickest way to generate dummy variables is by using a combination of tab/gen command. Here is an example

. tab gender,	gen(gender)		
gender	Freq.	Percent	⊂um.
Male Female	493 560	46.82 53.18	46.82 100.00
Total	1,053	100.00	
. tab1 gender	• #		
-> tabulatior	n of gender		
gender	Freq.	Percent	⊂um.
Male Female	493 560	46.82 53.18	46.82 100.00
Total	1,053	100.00	
-> tabulatior	n of gender1		
gender==Mal e	Freq.	Percent	Cum.
0 1	560 493	53.18 46.82	53.18 100.00
Total	1,053	100.00	
-> tabulatior	n of gender2		
gender==Fem ale	Freq.	Percent	⊂um.
0 1	493 560	46.82 53.18	46.82 100.00
Total	1,053	100.00	

Case study: factor analysis

Factor analysis is a data reduction technique. Question 8 has a battery of questions evaluating favorability levels for different candidates/politicians

higher the load the more relevant in defining the factor's conceptual meaning. A negative value indicates an inverse impact on the factor. Here, two factors are retained because both have eigenvalues over 1. It seems that 'x8b', 'x8d' and 'x8h' define factor1, and 'x8f', and 'x8i' define factor2.

Case study: factor analysis

Factor analysis is a data reduction technique. Question 8 has a battery of questions evaluating favorability levels for different candidates/politicians

By default the rotation is varimax which produces orthogonal factors. This means that factors are not correlated to each other. This setting is recommended when you want to identify variables to create indexes or new variables without inter-correlated components

Same description as in the previous slide with new composition between the two factors. Still both factors explain 63% of the total variance observed.

The pattern matrix here offers a clearer picture of the relevance of each variable in the factor.

I	or analysis/co Method: princi Rotation: orth	prrelation pal-component f nogonal varimax	Number of obs Retained fact Number of para	ors = 2	
-	Factor	Vari ance	Di fference	Proporti on	Cumul ati ve
7	Factor1 Factor2	4. 08288 2. 24377	1.83911	0. 4083 0. 2244	0. 4083 0. 6327

LR test: independent vs. saturated: chi 2(45) = 4884.51 Prob>chi 2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances

	Vari abl e	Factor1	Factor2	Uni queness
•	x8a x8b x8c x8d x8e x8f x8g x8h x8i x8i x8j	-0. 8860 0. 8780 -0. 8260 0. 9285 -0. 4075 -0. 0888 0. 2836 0. 8513 0. 0483 0. 0350	0. 2103 0. 1124 0. 2790 0. 0343 0. 6055 0. 6869 0. 5257 0. 1947 0. 7245 0. 6559	0. 1709 0. 2165 0. 2399 0. 1367 0. 4674 0. 5202 0. 6432 0. 2373 0. 4728 0. 5686

Factor rotation matrix

This is a correlation matrix between factor1			Factor1	Factor2
and factor2.	\rightarrow	Factor1 Factor2	0. 9930 0. 1177	-0. 1177 0. 9930

NOTE: If you want the factors to be correlated (oblique rotation) you need to use the option promax after rotate:

rotate, promax

Type help rotate for details.

Case study: factor analysis, step 3 (predict)

To create the new variables, after factor, rotate you type predict.

predict x8f1 x8f2 /*Or whatever name you prefer to identify the factors*/

. predict x8f1 x8f2 (regression scoring assumed)

Scoring coefficients (method = regression; based on varimax rotated factors)

Vari abl e	Factor1	Factor2					
x8a	-0. 21306	0. 07271					
x8b	0. 21892	0. 07169					
x8c	-0. 19662	0. 10498					
x8d	0. 22947	0. 03792					
x8e	-0. 08565	0. 26140					
x8f	-0. 00521	0. 30564					
x8g	0. 08259	0. 24245					
x8ĥ	0. 21436	0. 10790					
x8i	0. 02947	0. 32580					_
x8j	0. 02453	0. 29473					
	<u> </u>			(×8f1	Scores for factor 1	
	1				×8f2	Scores for factor 2	
	are the regr dividual score		icients used to estimate		*		

We reduced all eight variables to two: x8f1 and x8f2. There is another way to use these results. We could create indexes out of each cluster of variables. For example, 'x8b', 'x8d' and 'x8h' define the first factor. You could aggregate these to create a new variable to measure 'Republican favorability'. The second factor is defined by 'x8e', 'x8f', x8i' and 'x8j' related to 'government institutions'. Since all variables are in the same valence (go from 0 to 100), we can create the two new variables as

gen repubfav = (x8b + x8d + x8h)/3
gen govinst = (x8e + x8f + x8i + x8j)/4

Case study: regression

We use the command regress to run a regression

regress x8a gender age educ income x25*, robust

. regress x8a gender age educ income x25*, robust

Linear regression

Number of obs =	857
F(14, 842) =	138.68
Prob > F =	0.0000
R-squared =	0. 6114
Root MSE =	22. 13

x8a	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gender	1. 085681	1. 524235	0. 71	0. 476	-1. 906064	4.077427
age	0954027	. 4441548	-0. 21	0.830	9671832	. 7763779
educ	1. 570695	. 8151773	1. 93	0. 054	0293229	3. 170713
i ncome	2996345	. 4764621	-0. 63	0. 530	-1. 234827	. 6355583
x25a	1. 101605	. 2762611	3.99	0.000	. 5593636	1. 643846
x25b	. 6041541	. 2659564	2.27	0. 023	. 0821388	1. 126169
x25c	2.749842	. 3712377	7.41	0.000	2. 021182	3. 478502
x25d	1274084	. 3054922	-0. 42	0. 677	7270241	. 4722072
x25e	2741189	. 2758408	-0. 99	0. 321	8155351	. 2672973
x25f	9597492	. 3174276	-3.02	0.003	-1. 582792	3367069
x25g	1. 201146	. 3624039	3. 31	0. 001	. 4898251	1. 912467
x25ȟ	-2. 622509	. 3181912	-8.24	0.000	-3. 24705	-1. 997968
x25i	6518584	. 3177172	-2.05	0. 041	-1. 275469	0282476
x25j	. 699863	. 3073602	2.28	0. 023	. 0965809	1. 303145
x25f1	(dropped)					
x25f2	(dropped)					
x25f3	(dropped)					
_cons	39. 59818	7.345718	5.39	0.000	25. 18011	54.01625

Case study: regression

regress x8b gender age educ income x25*, robust

. regress x8b gender age educ income x25*, robust

Linear regression

Number of obs =	=	857
F(14, 842)	=	70.66
Prob > F	=	0.0000
R-squared	=	0. 4955
Root MSE	=	22. 135

x8b	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
gender	2. 568956	1. 529457	1.68	0. 093	4330398	5. 570951
age	3590177	. 4220541	-0. 85	0. 395	-1. 187419	. 469384
educ	2. 394501	. 8376223	2.86	0.004	. 7504277	4. 038573
i ncome	. 7567806	. 5004008	1. 51	0. 131	2253989	1. 73896
x25a	4245393	. 2513435	-1.69	0. 092	9178727	. 068794
x25b	5100364	. 2616189	-1.95	0. 052	-1.023538	. 0034653
x25c	-1. 546259	. 3302899	-4.68	0.000	-2. 194547	8979706
x25d	0041063	. 2839938	-0. 01	0. 988	5615252	. 5533125
x25e	5360159	. 2764522	-1.94	0. 053	-1.078632	. 0066005
x25f	1. 08052	. 3298975	3. 28	0. 001	. 4330022	1.728038
x25g	2805339	. 3361083	-0. 83	0. 404	9402424	. 3791746
x25ȟ	3. 539997	. 3070789	11. 53	0.000	2. 937267	4. 142727
x25i	. 5077791	. 3273211	1.55	0. 121	134682	1. 15024
x25j	0397483	. 2948785	-0. 13	0. 893	6185315	. 5390349
x25f1	(dropped)					
x25f2	(dropped)					
x25f3	(dropped)					
_cons	28. 87047	7. 224851	4.00	0.000	14. 68964	43.0513

	(1)	(2)
COEFFICIENT	x8a	x8b
gender	1.09	2.57
	(1.52)	(1.53)
age	-0.10	-0.36
	(0.44)	(0.42)
educ	1.57	2.39**
	(0.82)	(0.84)
income	-0.30	0.76
	(0.48)	(0.50)
x25a	1.10***	-0.42
	(0.28)	(0.25)
x25b	0.60*	-0.51
	(0.27)	(0.26)
x25c	2.75***	-1.55***
	(0.37)	(0.33)
x25d	-0.13	-0.00
	(0.31)	(0.28)
x25e	-0.27	-0.54
	(0.28)	(0.28)
x25f	-0.96**	1.08**
	(0.32)	(0.33)
x25g	1.20***	-0.28
	(0.36)	(0.34)
x25h	-2.62***	3.54***
	(0.32)	(0.31)
x25i	-0.65*	0.51
	(0.32)	(0.33)
x25j	0.70 [*]	-0.04
	(0.31)	(0.29)
Constant	39.60***	28.87***
	(7.35)	(7.22)
Observations	857	857
R-squared	0.61	0.50
Adj. R-squared	0.60	0.49

Robust standard errors in parentheses *** p<0.001, ** p<0.01, * p<0.05

Case study: regression (exporting results)

Use the outreg2 command to export the output in a journal-paper like presentation. Run outreg2 after each regression as follows

regress x8a gender age educ income x25*, robust

outreg2 using model, bdec(2) tdec(2) rdec(2) adec(2)
alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e(r2_a))
word

"model.rtf" < Click here to see the document

regress x8b gender age educ income x25*, robust

outreg2 using model, bdec(2) tdec(2) rdec(2) adec(2)
alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e(r2_a))
word append

Click here to see the document

'model.rtf"

Case study: do-file (part1)

log using workshop.log	/*Preparing income variable*/
	gen income=f13
/*Distribution of electoral preferences (frequencies)*/	tab income
tab q5 /*No weights*/	labelbook f13 label value income f13
tab q5 / No weights / tab q5 [aweight=weight] /*With weights*/	tab income
	replace income=. if income==8
tab qa /*No weights*/	label variable income "Family income"
tab qa [aweight=weight] /*With weights*/	tab income
/*Electoral preferences by some demographics*/	/*Preparing employment variable*/
	gen employ=f8
tab q5 qa [aw=weight], col row /*Electoral preferences by gender*/	tab employ
tab q5 f1 [aw=weight], col row /*Electoral preferences by age*/	labelbook f8
tab q5 f4 [aw=weight], col row /*Electoral preferences by education*/	label value employ f8
tab q5 f13 [aw=weight], col row /*Electoral preferences by income*/	tab employ
tab q5 f8 [aw=weight], col row /*Electoral preferences by employment status*/	replace employ=. if employ==8
	label variable employ "Employment status"
/*Preparing age variable*/	tab employ
gen age=f1	/*December and a veriable * /
tab age	/*Preparing gender variable*/
labelbook f1	gen gender=qa
label value age f1 tab age	tab gender labelbook qa
replace age=. if age>8	label value gender qa
label variable age "Age"	tab gender
tab age	
	/*Recoding electoral question*/
/*Preparing education variable*/	recode q5 (1=1 "Obama/Biden") (2=2 "McCain/Palin") (3 4 8=3
	"Undecided/DK/NA/Other"), gen(elec) label(elec)
gen educ=f4	tab q5
tab educ	tab elec
labelbook f4	
label value educ f4	/*Testing for associations*/
tab educ	tab elec gender, nofreq chi2
replace educ=. if educ==8	tab elec age, nofreq chi2
label variable educ "Educational attainment"	tab elec educ, nofreq chi2
tab educ	tab elec income, nofreq chi2
	tab elec employ, nofreq chi2

/*Factor, data preparation*/
gen x8a = q8a gen x8b = q8b gen x8c = q8c gen x8d = q8d gen x8e = q8e gen x8f = q8f gen x8g = q8g gen x8h = q8h gen x8i = q8i gen x8j = q8j
replace $x8a = .$ if $x8a>100$ replace $x8b = .$ if $x8b>100$ replace $x8c = .$ if $x8b>100$ replace $x8c = .$ if $x8c>100$ replace $x8d = .$ if $x8d>100$ replace $x8f = .$ if $x8f>100$ replace $x8g = .$ if $x8f>100$ replace $x8g = .$ if $x8f>100$ replace $x8h = .$ if $x8h>100$ replace $x8h = .$ if $x8h>100$ replace $x8i = .$ if $x8h>100$
label variable x8a "Obama" label variable x8b "McCain" label variable x8c "Biden" label variable x8d "Palin" label variable x8e "Congress" label variable x8f "Congressman" label variable x8f "Congressman" label variable x8f "Supreme court" label variable x8g "Supreme court" label variable x8i "State gov" label variable x8j "Local gov"
/*Running factor analysis */
factor x8a x8b x8c x8d x8e x8f x8g x8h x8i x8j, pcf rotate predict x8f1 x8f2
gen repubfav = $(x8b + x8d + x8h)/3$

gen govinst = (x8e + x8f + x8i + x8j)/4

```
Case study: do-file (part 2)
```

/*Descriptive statistics*/
tabstat q8a x8a q8b x8b, s(mean)
tabstat x8a x8b x8c x8d x8e x8f x8g x8h x8i x8j, s(mean median sd var count range min max)
describe x8*
/* One more factor example */
gen x25a = q25a gen x25b = q25b gen x25c = q25c gen x25d = q25d gen x25f = q25e gen x25f = q25f gen x25g = q25g gen x25h = q25h gen x25i = q25i gen x25j = q25j
replace $x25a = .$ if $x25a>10$ replace $x25b = .$ if $x25b>10$ replace $x25c = .$ if $x25c>10$ replace $x25d = .$ if $x25d>10$ replace $x25e = .$ if $x25e>10$ replace $x25f = .$ if $x25f>10$ replace $x25g = .$ if $x25g>10$ replace $x25h = .$ if $x25h>10$ replace $x25i = .$ if $x25h>10$ replace $x25i = .$ if $x25i>10$ replace $x25i = .$ if $x25i>10$

Case study: do-file (part 3)

label variable x25a "A woman should be able to get an abortion if she wants one in the first three months of pregnancy, no matter what the reason" label variable x25b "Gay couples should be allowed to marry, giving them full legal rights of married couples"

label variable x25c "The government should provide health care coverage to all citizens who can't afford it, even if it means higher taxes"

label variable x25d "Government regulation of financial institutions should be greatly increased"

label variable x25e "The government should have let financial institutions that got into trouble over bad mortgage debt go out of business rather than trying to rescue them"

label variable x25f "The government should allow offshore drilling for oil and gas in the waters off the U.S. coast

label variable x25g "Congress should pass stricter laws to protect the environment and reduce global warming, even if the economic costs are high" label variable x25h "Our troops should stay in Iraq without a timetable for withdrawal until the Iraqi government is stable"

label variable x25i "Government should cut taxes on businesses to help the economy"

label variable x25j "The government should help people who can't afford their mortgage payments by suspending foreclosures until the economy has improved"

factor x25a x25b x25c x25d x25e x25f x25g x25h x25i x25j, pcf rotate predict x25f1 x25f2 x25f3

/*Regression*/

regress x8a gender age educ income x25*, robust regress x8b gender age educ income x25*, robust

Exploring data: annotated output

Exploring data: frequencies (intro)

Frequency refers to the number of times a value is repeated. Frequencies are usually used to analyze <u>categorical data</u>. The tables below are *frequency tables*. Values are in ascending order. Use the command tab (type help tab for more details)

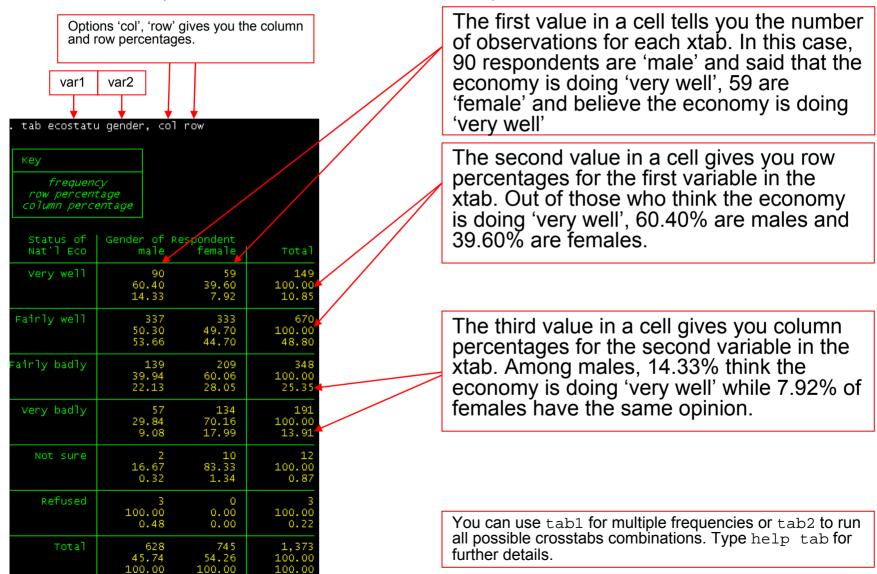
. tab major			
Major	Freq.	Percent	⊂um.
Econ Math Politics	10 10 10	33.33 33.33 33.33	33.33 66.67 100.00
Total	30	100.00	

'<u>Freq</u>.' provides a raw count of each value. In this case 10 students for each major.

'<u>Percent</u>' gives the relative frequency for each value. For example, 33.33% of the students in this group are econ majors.

'<u>Cum.</u>' is the cumulative frequency in ascending order of the values. For example, 66.67% of the students are econ or math majors.

.tab readne	ews		
Newspaper read / week	Freq.	Percent	Cum.
3 4 5 6 7	6 5 9 7 3	20.00 16.67 30.00 23.33 10.00	20.00 36.67 66.67 90.00 100.00
Total	30	100.00	


'<u>Freq</u>.' Here 6 students read the newspaper 3 days a week, 9 students read it 5 days a week.

"<u>Percent</u>". Those who read the newspaper 3 days a week represent 20% of the sample, 30% of the students in the sample read the newspaper 5 days a week.

'<u>Cum</u>.' 66.67% of the students read the newspaper 3 to 5 days a week.

Exploring data: crosstabs

Also known as *contingency tables*, crosstabs help you to analyze the relationship between two or more variables (mostly categorical). Below is a crosstab between the variable 'ecostatu' and 'gender'. We use the command tab (with two variables to make the crosstab).

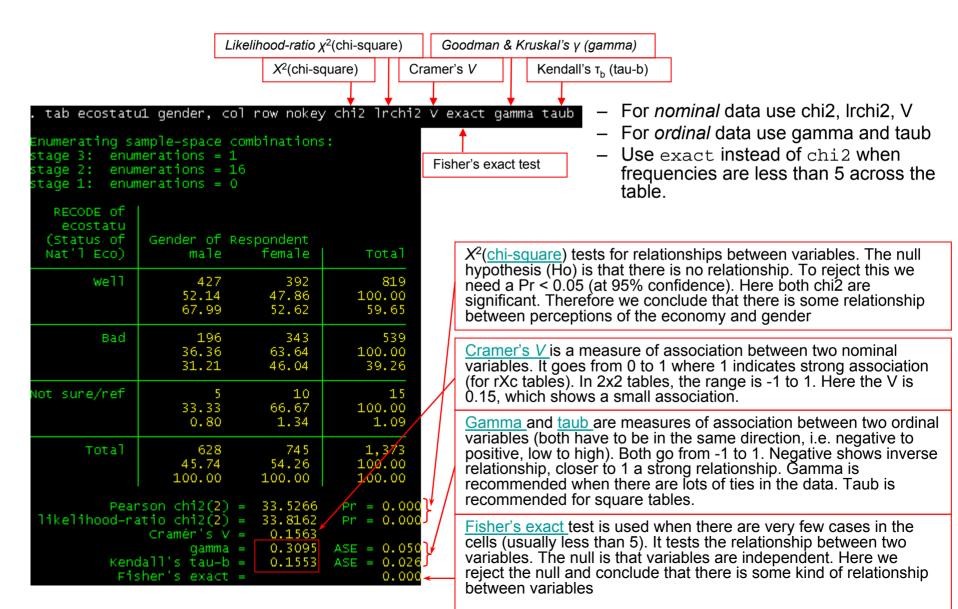
Exploring data: crosstabs (a closer look)

You can use crosstabs to compare responses among categories in relation to aggregate responses. In the table below we compare male and female responses vs. the national aggregate.

. tab ecostatu	u gender, col	row	
кеу			
frequen row percen column perce	fage		
Status of	Gender of R	espondent	Total
Nat'l Eco	male	female	
very well	90	59	149
	60.40	39.60	100.00
	14.33	7.92	10.85
Fairly well	337	333	670
	50.30	49.70	100.00
	53.66	44.70	48.80
Fairly badly	139	209	348
	39.94	60.06	100.00
	22.13	28.05	25.35
Very badly	57	134	191
	29.84	70.16	100.00
	9.08	17.99	13.91
Not sure	2	10	12
	16.67	83.33	100.00
	0.32	1.34	0.87
Refused	3	0	3
	100.00	0.00	100.00
	0.48	0.00	0.22
Total	628	745	1,373
	45.74	54.26	100.00
	100.00	100.00	100.00

As a rule-of-thumb, a margin of error of ± 4 percentage points can be used to indicate a significant difference (some use ± 3).

For example, rounding up the percentages, 11% (10.85) answer 'very well' at the national level. With the margin of error, this gives a range roughly between 7% and 15%, anything beyond this range could be considered significantly different (remember this is just an approximation). It does not appear to be a significant bias between males and females for this answer.


In the 'fairly well' category we have 49%, with range between 45% and 53%. The response for males is 54% and for females 45%. We could say here that males tend to be a bit more optimistic on the economy and females tend to be a bit less optimistic.

If we aggregate responses, we could get a better picture. In the table below 68% of males believe the economy is doing well (comparing to 60% at the national level, while 46% of females thing the economy is bad (comparing to 39% aggregate). Males seem to be more optimistic than females.

	RECODE of ecostatu (Status of Nat'l Eco)	Gender of male	Respondent female	Total
	well	427 52-14 (67.99)	392 47.86 52.62	819 19 0.0 0 (59.65
-	Bad	196 36.36 31.21	343 6 3.64 (46.04)	539 1 90.6 9 39.26
	Not sure/ref	5 33.33 0.80	10 66.67 1.34	15 100.00 1.09
	Total	628 45.74 100.00	745 54.26 100.00	1,373 100.00 100.00

Exploring data: crosstabs (test for associations)

To see whether there is a relationship between two variables you can choose a number of tests. Some apply to <u>nominal</u> variables some others to <u>ordinal</u>. I am running all of them here for presentation purposes.

Exploring data: descriptive statistics

For continuous data we use <u>descriptive statistics</u>. These statistics are a collection of measurements of two things: *location* and *variability*. Location tells you the central value of your variables (the mean is the most common measure of this). Variability refers to the spread of the data from the center value (i.e. variance, standard deviation). Statistics is basically the study of what causes such variability. We use the command tabstat to get these stats (the 's' after the comma means 'statistics').

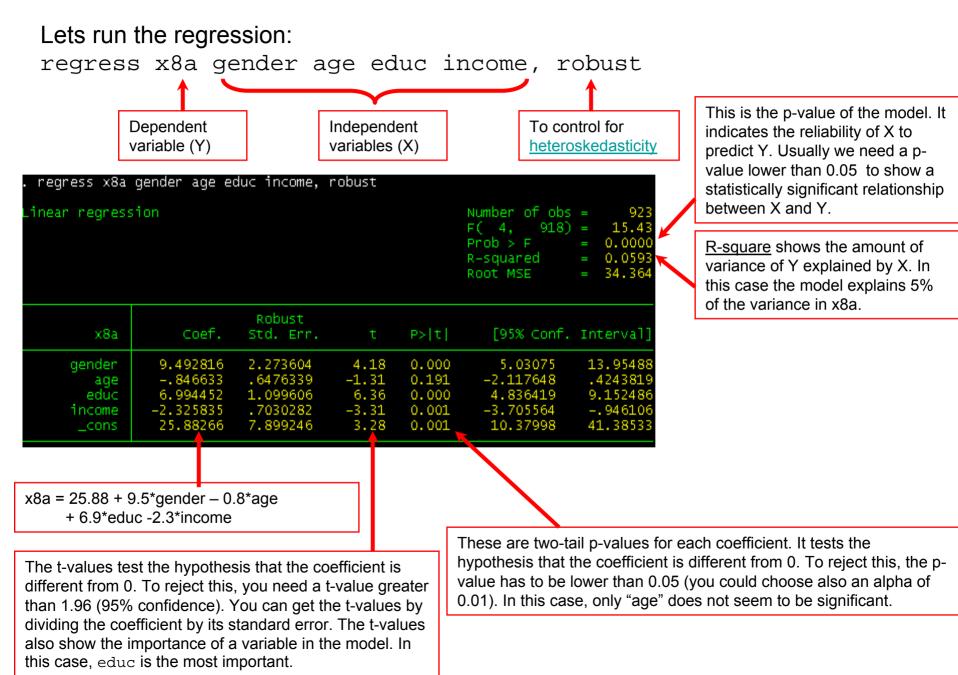
. tabstat	age sat	score heig	ht readnew	s, s(mean	median sd	var count	: range	min max)
stats	age	sat	score	height	readnews			
mean	25.2	1848.9	80.36667	66.43333	4.866667			
p50	23	1817	79.5	66.5	5			
sd	6.870226	275.1122	10.11139	4.658573	1.279368			
variance	47.2	75686.71	102.2402	21.7023	1.636782			
N	30	30	30	30	30			
range	21	971	33	16	4			
min	18	1338	63	59	3			
max	39	2309	96	75	7			

•The *mean* is the sum of the observations divided by the total number of observations.

•The *median* (p50 in the table above) is the number in the middle . To get the median you have to order the data from lowest to highest. If the number of cases is odd the median is the single value, for an even number of cases the median is the average of the two numbers in the middle.

•The *standard deviation* is the squared root of the variance. Indicates how close the data is to the mean. Assuming a normal distribution, 68% of the values are within 1 sd from the mean, 95% within 2 sd and 99% within 3 sd

•The *variance* measures the dispersion of the data from the mean. It is the simple mean of the squared distance from the mean.


•Count (N in the table) refers to the number of observations per variable.

•Range is a measure of dispersion. It is the difference between the largest and smallest value, max – min.

•*Min* is the lowest value in the variable.

•Max is the largest value in the variable.

Exploring data: regression (what to look for)

Exploring data: regression, publishing regression output (outreg2)

Once you define your final model, you can export your regression results using either your log file or the option outreg2. For the log you just open it using any word processor and copy-and-paste the regression table into excel or word. The command outreg2 gives you the type of presentation you see in scholar's papers. Let's say the final regression is

regress csat percent percent2 high

After running the regression type the following if you want to export the results to excel*

outreg2 using results, bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) addstat(Adj. Rsquared, e(r2_a)) excel

Or this if you want to export to word

outreg2 using results, $bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, <math>e(r2_a)$) word

You will see this in Stata's output window

For excel outreg2 using results, bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e (r2_a)) excel 'results.xml' eeout Click here to see the output, a excel/word window will open For word outreg2 using results, bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) addstat(Adj. R-squared, e(r 2 a)) word 'results.rtf" eeout Set # of Set # of decimals Name of Include some additional statistic, in this decimals for for added statistics case adj. R-sgr. You can select any the file for auxiliarv (addstat option) the output statistics on the return lists (e-class, rstatistics class or s-class). After running the regression type ereturn list for a list Click on secout Set # of Set # of Levels of of available statistics. to browse the decimals decimals significance for the R² results for coefficients

Type help outreg2 for more details. If you do not see outreg2, you may have to install it by typing ssc install outreg2. If this does not work type findit outreg2, select from the list and click "install".

Note: If you get the following error message (when you use the option append or replace it means that you need to close the excel/word window.

ile results.rtf is read-only; cannot be modified or erased

*See the following document for some additional info/tips http://www.fiu.edu/~tardanic/brianne.pdf

Exploring data: regression, publishing regression output (outreg2)

This is how the output would like (you will still need to do some additional editing):

In excel	
----------	--

	A	В		
1	v1	v2		
2	COEFFICIENT	csat		
3				
4	percent	-6.52***		
5		(0.51)		
6	percent2	0.05***		
7		(0.01)		
8	high	2.99***		
9		(0.49)		
10	Constant	844.82***		
11		(36.63)		
12	Observations	51		
13	R-squared	0.93		
14	Adj. R-squared	0.92		
15	Standard errors in parentheses			
16	**** p<0.001, ** p<0.01, * p<0.05			

COEFFICIENT	csat	
percent	-6.52***	
	(0.51)	
percent2	0.05***	
	(0.01)	
high	2.99***	
-	(0.49)	
Constant	844.82***	
	(36.63)	
Observations	51	
R-squared	0.93	
Adj. R-squared	0.92	
Standard errors i	n parentheses	
*** p<0.001, ** p<0.01, * p<0.05		

You can add more models to compare. Lets say you want to add another model without percent2:

regress csat percent high

Now type to export the results to excel (notice we add the append option)

outreg2 using results, bdec(2) tdec(2) rdec(2) adec(2) alpha(0.001, 0.01, 0.05) addstat(Adj. Rsquared, e(r2_a)) excel append

In excel					
	A	В	C		
1	v1	v2	v3		
2		(1)	(2)		
3	COEFFICIENT	csat	csat		
4					
5	percent	-6.52***	-2.32***		
6		(0.51)	(0.16)		
7	percent2	0.05***			
8		(0.01)			
9	high	2.99***	2.56**		
10		(0.49)	(0.76)		
11	Constant	844.82***	831.63***		
12		(36.63)	(57.39)		
13	Observations	51	51		
14	R-squared	0.93	0.81		
15	Adj. R-squared	0.92	0.80		
16	Standard errors in parentheses				
17	**** p<0.001, ** p<0.01, * p<0.05				

In word		
	(1)	(2)
COEFFICIENT	csat	csat
	6 50***	0.00***
percent	-6.52***	-2.32***
	(0.51)	(0.16)
percent2	0.05***	
	(0.01)	
high	2.99***	2.56**
	(0.49)	(0.76)
Constant	844.82***	831.63***
	(36.63)	(57.39)
Observations	51	51
R-squared	0.93	0.81
Adj. R-squared	0.92	0.80

Standard errors in parentheses *** p<0.001, ** p<0.01, * p<0.05